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will be substantially less than suggested in Figures 2 and 3 and will be much 
longer ranged in character than the primary-primary transition state in­
teractions. For example, 

I. Introduction 
The dilute aqueous solution of methane is a system of 

prominent interest in molecular liquids as the prototype of a 
nonpolar molecular solute dissolved in liquid water. Moreover, 
a detailed knowledge of the structure of the methane-water 
solution at the molecular level can provide leading information 
on the interaction of water with dissolved hydrocarbon chains 
in general and thereby contribute to the theoretical basis for 
understanding the role of water in maintaining the three-
dimensional structural integrity of biological macromolecules 
in solution. 

We report herein new theoretical studies of the methane-
water intermolecular interaction and Monte Carlo computer 
simulations of the dilute aqueous solution of methane under 
canonical ensemble conditions, with temperature T, volume 
V, and number of particles N specified and constant. All 
simulations are based on pairwise potential functions repre­
sentative of ab initio quantum mechanical calculations of the 
intermolecular interactions. 

Our analysis of solution structure is developed in terms of 
quasicomponent distribution functions in a manner consistent 
with a previous analysis of liquid water structure contributed 
from this laboratory. Perturbations of water structure by dis­
solved methane are developed in terms of difference quasi-
component distribution functions. This study forms an integral 
part of a series of theoretical investigations on the solvation of 
prototype biomolecular functional groups and solvent effects 
on noncovalent biomolecular processes currently underway in 
this laboratory. 

II. Background 
General backgrounds on solutions of nonpolar solutes in 

water have been recently reviewed by Franks1 and Ben-Nairn.2 

Early important work on this system is due to Eley3 and Frank 
and Evans.4 Methane has been identified as a "structure 
maker" in aqueous solution in the language of Frank and 
Wen.5 The nature of structural changes in solvent water by 
dissolved hydrocarbons has for some time been discussed in 

(33) The LUMO secondary orbital coefficients are similar in magnitudes in /3-
phenylmethyl propiolate. However, the secondary orbital coefficients in 
the next LUMO are large and only the primary-secondary interaction in­
volving the carbomethoxy group will be bonding in the interaction of this 
MO with the HOMO of the dipole. No reversals are predicted in these cases 
if only the primary orbital coefficients are considered. 

(34) K. Hultzch, Angew. Chem., 60, 179 (1948). 

terms of water clathrate formation6 based on work by Glew7 

f and analogies drawn from a number of hydrate crystal struc­
tures of nonpolar species,8 known to involve water clathrate 
cages of order 20 and 24. 

' ' Early computer simulations of the methane-water system 
were reported by Dashevsky and Sarkisov.9 Recent important 
theoretical studies of the methane-water system are the ab 

o r initio molecular orbital calculations of the methane-water 
,e. pairwise interaction energy by Ungemach and Schaefer10 and 
e s the Monte Carlo computer simulation on the dilute aqueous 

solution in the isothermal-isobaric ensemble by Owicki and 
s_ Scheraga11 (OS). The OS simulation was based on the 
gr water-water potential discussed below and a potential function 
e r representative of the Ungemach-Schaefer calculations for the 
ne methane-water interaction. Due to limitations in the potential 
^i functions, the density of the system in these calculations turned 
,e. out to be somewhat lower than that observed at 25 0C; still 
n e analysis of the results gave the best quantitative theoretical 

evidence of structuration of vicinal water in the solution to date 
0f and the calculated average methane-water coordination 
n t number of 23 is consistent with water clathrate contributions 
^ to the solution structure. 
•'g. Theoretical studies of the methane-water solution require 
jj. an accurate description of the structure of the pure solvent, 
.al liquid water, as a point of departure. The structure of liquid 
0f water has been the subject of two recent Monte Carlo computer 
. t s simulations, one from this laboratory using the canonical 
j n (T, V1N) ensemble12 and the other by Owicki and Scheraga in 

the isothermal-isobaric (T,P1N) ensemble.13 Both calculations 
are based on the analytical pairwise potential function for the 
water-water interactions representative of ab initio quantum 
mechanical configuration interaction calculations,14 known 

in to give reasonable agreement with experimental data on the 
i.2 oxygen-oxygen radial distribution function.15 The calculated 
nk radial distribution functions of liquid water are seen to be very 
re sensitive to electron correlation effects in the intermolecular 
id potential function.12 

by The individual papers contain considerable additional details 
in on the structure of water from different but mutually com-
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plementary viewpoints. The details of our analysis were based 
directly on Ben-Nairn's quasicomponent distribution functions2 

for coordination number and binding energy. The distribution 
of coordination numbers ranged from 2 to 6 and consisted of 
some 47% four-coordinate species, with 3, 5, and 6 indicated 
at the 19, 24, and 6% levels, respectively.12 Both studies12-13 

are supportive of a unimodal distribution of energetic envi­
ronments for water molecules in the statistical state of the 
liquid at 25 0C. 

This paper describes the extension of our (T, V,N) ensemble 
studies on liquid water to the dilute aqueous solution of 
methane, maintaining the use of potential functions repre­
sentative of quantum mechanical calculations of the pairwise 
interaction energies. The analysis of solution structure involves 
the calculated distribution of coordination numbers and 
binding energies in the statistical state of the solution and 
identifies explicitly the supermolecular structures with high 
statistical weights. Additional theoretical questions we have 
taken up beyond previous studies include electron correlation 
effects on the methane-water potential and on solution 
structure, methane excluded volume effects on solution 
structure, and quantitative consideration of solute perturba­
tions on solvent structure as quantitatively described by dif­
ference quasicomponent distribution functions. 

III. Calculations 

We consider herein the diffusionally averaged equilibrium 
structure of the dilute solution of methane in water using the 
Metropolis method16 for statistical thermodynamic Monte 
Carlo computer simulation. The literature of this general type 
of calculation has recently been reviewed by Barker and 
Henderson.17 The specific formulation of the problem and 
notation relevant to this study are given in our previous paper 
on liquid water structure. The Monte Carlo calculations involve 
one methane molecule and 124 water molecules at 25 0C at a 
density of 1 g/cm3; this is within 1% of the density computed 
from the observed partial molar volumes of methane and 
water.2 The condensed phase environment is modeled by 
conventional periodic boundary conditions in the minimum 
image convention.18 Standard deviations on each of the 
quantities calculated are determined using control functions 
in the manner set forth by Wood.19 

The configurational energy of the system is developed under 
the assumption of pairwise additivity of intermolecular inter­
actions using potential functions representative of ab initio 
quantum mechanical calculations of the water-water and 
methane-water interaction energies. For the water-water 
interaction energy we have carried over the potential function 
developed by Matsuoka, Clementi, and Yoshimine14 based on 
moderately large configuration interaction calculations on the 
water dimer and used in previous studies.12 

For the methane-water interaction energy, we have recently 
reported an analytical potential function representative of ab 
initio 6-31G molecular orbital (MO) calculations20 using the 
"Heuristic Potential Function" Method.21 The final form of 
the function is determined from interaction energies calculated 
for 225 methane-water configurations generated by inde­
pendent random positional and orientational deployments of 
a water molecule with respect to methane within a center of 
mass separation of 5.5 A. The function passes smoothly into 
the correct limiting behavior of the interaction energy at infi­
nite intermolecular separation. The overall standard deviation 
of the function is 0.41 kcal/mol and interaction energies within 
2 kcal/mol of the minimum, given preferential weighting in 
the curve fitting procedure, are described within a standard 
deviation of 0.14 kcal/mol. The predictive value of the function 
for energies within 2 kcal/mol of the minimum is estimated 
at a = 0.30 kcal/mol. This function is commensurate in quality 
with the calculations of the methane-water interaction energy 

Table I. Coefficients a, b, and c of Atomic and Pseudo-Atomic 
(PSA) Terms in the Methane-Water MO STO 6-3IG 
Intermolecular Potential Function" 

CH 4 

H2O 

inverse 
power 

of/-

12 
1 
3 

inverse 
power 
of/-

12 
1 
3 

C 

1.19 X 10 
-9 .75 X 10-3 
-9 .07 X 10+2 

O 

2.88 X 10+5 

-1.37 X 10+2 
4.98 X 10-3 

H 

H 

4.72 X 10-2 
2.41 X 10-3 
1.93 X 10+2 

PSA 

1.03 X 10+4 - 4 . 1 2 X 10+4 

1.14X10 3.78 
1.24X10-3 4.19 X l O - 4 

" The functional form* is 

i € CH4; j € H2O 

where ry is the interatomic separation of atoms (or PSA) i andy. For 
methane, rcn - 1.09 A and bond angles are tetrahedral. For water, 
/•OH = 0.957 A and ZHOH is 104.52°. The PSA centers are tetrahe-
drally coordinated to the oxygen atom at a distance of 0.1852 A. b This 
function is used for the calculation of interaction energies for inter­
molecular center of mass separations <7.75 A; energies beyond this 
point are taken as zero in the spherical cutoff/minimum image con­
vention. This function as it stands would suffer from quasi-ionic effects 
as r -» oo and if used without a consistent truncation point could result 
in N dependence in computer simulation. The problem can be elimi­
nated by curve fitting under the constraint that the coefficients of 
terms in r~", n ^ 3, balance, as described by Jorgensen and Cour-
noyer.28 

by Ungemach and Schaefer,10 and thus with the potential 
function used in the OS simulation. The MO function is de­
fined in Table I. The nature of the methane-water interaction 
as described by the MO function is shown in Figure 1. 

The structure of liquid water was previously observed to be 
quite sensitive to electron correlation effects in the water-water 
pairwise interaction.12 The pairwise interaction between 
methane and water is expected to be relatively weak (ca. 
(\-2)kv,T) and is also expected to be significantly dependent 
upon electron correlation. For the purposes of the present 
study, we have calculated the second-order Moller-Plesset 
(MP) correlation energy22 for the methane-water interaction 
at each of 95 lowest energy points involved in the determination 
of the STO 6-3IG MO function described in the previous 
paragraph and developed an analytical potential function 
representative of MP calculations. The MP function is given 
in Table II. The nature of the methane-water interaction as 
described by the MP function is shown in Figure 2. The stan­
dard deviation of the function is <x = 0.13 kcal/mol for all 
points below 2 kcal/mol. A comparison of the MO and MP 
energies for a slice of the methane-water potential energy 
hypersurface is given in Figure 3. Electron correlation effects 
are seen to reduce the binding energy by ~0.5 kcal/mol in low 
energy regions and decrease the equilibrium methane-water 
separation by ~15 A. 

Monte Carlo computer simulations are described herein 
based on each of three functions: The MP function, the MO 
function, and a related function we call "hard methane" (HM), 
obtained from the MO function by setting the attractive part 
of the MO function everywhere to zero in the manner of Barker 
and Henderson.23 A comparison of the results of simulations 
based on the MP and MO potentials gives an idea of the effect 
of electron correlation on the structure of the solution in a 
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Figure 1. Isoenergy contour map of orientationally optimized methane-
water interaction energies calculated from the (12-1-3) STO 6-31G MO 
potential function for the H-C-H plane. The distance coordinates refer 
to the separation between the centers of mass of the methane and water 
molecules in A. The molecular geometry corresponding to a given energy 
is depicted in a mirror image position in the top half of the plot. The relative 
size of the molecules is scaled down to make the plot more legible. 
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Figure 2. Isoenergy contour map of orientationally optimized methane-
water interaction energies calculated from the (12-1-3) MP potential 
function for the H-C-H plane. See caption to Figure 1 for further de­
tails. 

Table II. Coefficients a, b, and c of Atomic and Pseudo-Atomic 
(PSA) Terms in the Methane-Water MP intermolecular 
Function; see Table I for Definition of Functional Form" 

power 
of/- C H 

CH4 -4.07X 10-' 
-9.78 X 10-3 
-1.28 X 103 

-1.61 X 10-2 
2.40 X 10-3 
2.05 X 102 

power 
of/- O H PSA 

H2O 12 
1 
3 

-4.38 XlO6 -2.62 XlO5 

-5.65 X 102 6.08 X 10 
1.38 X 10-2 -8.79 X 10~4 

-5.93 X 105 

1.88 X 102 

-4.56 X 10-3 
1 See footnote b, Table I. 

manner analogous to that described previously for liquid water. 
The structure of the methane-water solution is expected to be 
largely due to methane excluded volume effects, and a com­
parison of simulation results based on MP and MO potentials 
with those obtained from the HM function permits a quanti­
tative study of this particular feature of the system. 

The principal point of comparison between calculation and 
experiment in this work is the thermodynamic partial molar 
internal energy of transfer Us for solute (S) methane from 
dilute gas phase to aqueous solution. This and other internal 
energies relevant to this work are formally defined in Figure 
4 and the equations below. Following Ben-Nairn, we write the 
expansion 

USw(T,K,Nw,Ns) = Uw{T,V,Nw) 

+ VdAVr, KA1W 
AS + (D 

where t/sw is the total internal energy of Aw water molecules 
and As solute molecules at temperature T and volume V, and 

Figure 3. A comparison of the MO (a) and MP (b) energies as a function 
of distance for geometry A of ref 10 (see also A in Figure 1). 

Uw is the total internal energy for Aw water molecules. In the 
addition of one solute molecule to water, As = 1 and the in­
ternal energy of transfer, neglecting higher order terms, is 

XdNs/ T.V.Nw 

= USW(T,V,NW,US = 1) - Uw(TKNw) (2) 

The quantities Usw and LAv are produced directly in computer 
simulations of the solution and pure solvent respectively as the 
configurational averages 

Usw(T.V,Nv/,Ns) 

= S ... /£ (X, S X W )P(X S ,X W ) dX s dX w (3) 

and 

Uw(T1KNw) = S ••• j"£(Xw) />(Xw) dXw (4) 



5708 Journal of the American Chemical Society / 100:18 / August 30,1978 

Table HI. Calculated Internal Energies for the Dilute Aqueous Solution of Methane at 25 0C Based on the MP, MO, and HM Potential 
Functions in kcal/mol 

MP MO HM 

t/sw (TVw= 124,N5= 1) 
C/wOVw= 124) 
t/w (ASv= 124) 
Us-
t/rel 
Us 

-1077.7 ± 3.6 
-1054.4 ±5.5 
-1079.4 ±3.6 

1.71 ±0.29 
-25.0 ±6.6 
-23.3 ± 6.6 

-1076.2 ±3.6 
-1054.4 ±5.5 
-1077.9 ±3.6 

1.73 ±0.27 
-23.5 ±6.6 
-21.8 ±6.6 

-1070.1 ±3.6 
-1054.4 ±5.5 
-1075.3 ±3.6 

5.19 ±0.27 
-20.9 ± 6.6 
-15.7 ±6.6 

+s 

Urel 

Us' + S 

Figure 4. Thermocycle illustrating the energetic quantities produced in 
a Monte Carlo computer simulation of a dilute solution of solute, S, in 
water, W. 
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Figure 5. Calculated methane-water radial distribution function g(R) 
vs. center of mass separation R from Monte Carlo computer simulation 
based on the MP function. 

where £(XS,XW) is the configurational energy of the system 
with solute specified by the configurational coordinates Xs and 
the A\v solvent water molecules specified by the configura­
tional coordinates Xw. The quantity />(XS,XW) is the proba­
bility of observing the system in configuration |Xs,Xwj. The 
quantities £(XW) and P(XW) are analogous terms for pure 
water. Thermodynamic quantities_expressed on a per particle 
basis are notated by a bar, as in Us-
_ Reference to Figure 4 shows an alternative formulation of 
Us to be 

Us = US> + Z7rel (5) 

The definition of the quantities on the right hand side of eq 5 
follows from partitioning the configurational energy according 
to 

£(XS,XW) = £SW(XS,XW) + £Ww(Xw) (6) 

where £sw and £ww are solute-water and solvent water 
contributions, respectively, defined under the assumption of 
pairwise additivity as 

£sw(Xs,Xw)= 2!£,.(XS,X,W) (7) 

and 

£ww(Xw)= f Eu(X,v,XJV) ( 8 ) 
Kj 

where £,• and Ejj are solute-water and water-water pairwise 
interaction energies. The transfer quantity U& is then defined 
as 

Z7S- = J " . . . J"£sw(Xs,Xw)AXs,Xw) dXsdXw (9) 

and represents the direct solute-solvent contributionjo the 
partial molar internal energy of transfer. The quantity t/s' can 
be written in terms of the quasicomponent distribution function 

for solute binding energy 

VXB( V) dv (10) 

where XB(V) is mole fraction of methane molecules with 
binding energy v. The second term on the right hand side of eq 
5 represents a contribution from solvent reorganization on 
solution formation and hence can be expressed in terms of a 
difference of a pure water term L\v and a solvent water term 

UTt\ = C/w — Uw (H) 

where 

Uw = S ••• /£ww(Xw)P(X s ,Xw) dXsdXw (12) 

Note t/rei is defined per solute particle. 

IV. Results 

The simulation using the MP potential is based on a 75OK 
stochastic walk, with the first 100K discarded in forming the 
ensemble averages. Convergence criteria and error bounds 
were determined from control functions taken at 25K intervals 
in the calculations. The number of discards was determined 
from minimum error bounds. The partial molar internal energy 
of methane is —23.3 ± 6.6 kcal/mol, compared with an ex­
perimental value of —2.6 kcal/mol.24 The complete set of 
calculated energetic quantities for all simulations reported are 
collected in Table III. 

The calculated radial distribution function for the center 
of mass of water molecules with respect to the center of mass 
of the methane molecule for the MP function is shown in 
Figure 5. We find a broad unstructured first peak and a min­
imum in the region of 5.3 A. Integrating g(R) up to this point 
yields an average water coordination number of 19.35. Ex­
perimental values for these quantities are not known, but taking 
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Figure 6. Calculated methane-water radial distribution function g(R) 
vs. center of mass separation R from Monte Carlo computer simulation 
based on the MO function. 
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Figure 8. Calculated quasicomponent distribution function Xc(K) vs. 
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Figure 7. Calculated methane-water radial distribution function g(R) 
vs. center of mass separation R from Monte Carlo computer simulation 
based on the HM function. 

into account differences in the (T, V,N) and (T,P,N) ensembles 
we find them in satisfactory accord with the calculated results 
of Owicki and Scheraga. 

The simulation involving the MO potential function was 
based on 575K steps with 150K discarded. The calculated 
partial molar internal energy for methane was found to be 
—21.8 ± 6.6 kcal/mol. The calculated methane-water radial 
distribution function is given in Figure 6. 

The simulation on hard methane involved 900K steps with 
275K discarded. The calculated partial molar internal energy 
was —15.7 ± 6.6 kcal/mol. The radial distribution function 
calculated with the HM potential function is given in Figure 
7. 

A theoretical analysis of the structure of the dilute aqueous 
solution of methane can be developed in terms of quasicom­
ponent distribution functions for coordination number and 
binding energies defined as described by Ben-Nairn in ref 2. 
The distribution of coordination numbers found within the first 
hydration shell (RM - 5.3) of methane in the statistical state 
of the solution is shown for all three simulations in Figure 8. 
Here we plot the mole fraction of particles Xc(K) vs. coordi­
nation number K in histograph form. The XQ(K) from the MP 
simulation is a broad unimodal distribution ranging from K 
= 16 to 22 with a maximum in the region of K = 19 and 20, 
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Figure 9. Calculated quasicomponent distribution function XBM vs. 
binding energy v for (a) the MP function, (b) the MO function, and (c) 
the HM function. 

biased slightly in shape toward higher coordination numbers. 
The Xc(K) for the MO simulation is slightly more symmetric, 
and the maximum is displaced to the region of K = 17 and 18. 
The HM simulation produces a slightly broader distribution 
of coordination numbers, unimodal with a maximum at K = 
17 and clearly biased toward higher K. 

The calculated quasicomponent distribution functions for 
binding energy, the mole fraction of particles XB(C) as a 
function of methane binding energy in the system, is shown for 
all three simulations in Figure 9. All x&(v) distributions are 
of a similar shape but displaced toward higher energy on going 
from the results of the MP simulation to those obtained from 
the HM potential. There is some incipient structure in the 
curve but the error bounds on the calculated values are too 
large to ascribe any statistical significance. 
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Figure 10. Stereographic view of methane and its first hydration shell taken 
from a structure with high statistical weight in xc(20) of the MP simu­
lation, (a) Disposition of centers of mass of water molecules about methane 
(shaded) with the quasiclathrate cage delineated; (b) disposition of water 
molecules about methane in the structure. Relative sizes of molecules 
scaled down for greater legibility in the figure; methane represented as 
a sphere. 

Qf0O 

Figure 11. Stereographic view of methane and its first hydration shell taken 
from another structure with high statistical weight in xc(20) of the MP 
function, (a) Disposition of centers of mass of water molecules about 
methane (shaded) with the quasiclathrate cage delineated; (b) disposition 
of water molecules about methane in the structure. 

V. Discussion 

This section deals with the following problems: (a) the 
comparison of calculated and observed partial molar internal 
energies for methane in aqueous solution, (b) the microscopic 
nature of the local solution environment of the solute methane, 
(c) electron correlation effects on solution structure, (d) the 
role of the soft part of the methane-water potential on solution 
structure, and (e) structuration effects in solvent water due to 
solute methane. 

Comparing the calculated and observed partial molar in­
ternal energies for methane in water, the calculated values 
from each of the three simulations, MP, MO, and HM, are 
seen to be negative but rather too low. The negative sign on this 
term is an essential feature of the hydrophobic effect as cur­
rently understood and has been ascribed to solvent water sta­
bilization effects. The partitioning of_£/s into solute effect Us' 
and a solvent relaxation contribution Ure\ is displayed in Table 
III. The Us' contribution is positive for all simulations and Utc\ 
is negative, consistent with current ideas on the hydrophobic 
effect. The solvent stabilization term is somewhat overesti­
mated, however, and leads to a_factor of 10 discrepancy be­
tween calculated and observed Us values, a difference of the 
order of 20 kcal/mol. If we assume this stabilization involves 
mainly those ~20 water molecules found in the first hydration 
shell of methane, this is an error of 1 kcal/mol per water 
molecule or a fraction of a kcal/mol per pairwise interaction 
or hydrogen bond. The major assumptions inherent in the 
calculations are the neglect of three-body and higher order 
contributions to the configurational energy, truncation errors 
in the quantum mechanical calculations of the pairwise in­
teraction energies, and statistical errors in the analytical po­
tential function. The discrepancy between calculated and ob­
served values is thus reasonable in perspective of the capabil­
ities and limitations of the configurational energy evalua­
tion. 

The distribution of coordination numbers for methane in the 
statistical state of the dilute aqueous solution of methane is 
consistent with water clathrate contributions. Our values are 
closer to those expected for a pentagonal dodecahedral cage 
whereas the corresponding results obtained in the OS (T,P,N) 
simulation were closer to the coordination number expected 
for the tetrakaidecahedral cage. In order to investigate further 

the microscopic nature of the local solution environment of 
methane, we have extracted a number of low energy configu­
rations from Xc(19) and *c(20) quasicomponents in the MP 
simulation and made stereographic ORTEP25 plots of methane 
and its first hydration shell. The structure which most closely 
resembles pentagonal dodecahedral clathrate cage is given in 
Figure 10. The resemblance seems to provide direct confir­
mation of clathrate contribution to the solution structure. In 
a number of the other structures the clathrate-like regions of 
the first hydration shell could be found but defects and dis­
tortions were more prevalent than in Figure 10. We have 
chosen one such structure that we feel is representative of the 
sample set and present it in Figure 11. The quasicomponent 
distribution functions for binding energy XB(V) collected in 
Figure 9 show that the solute methane is presented with a 
continuous distribution of energetic environments in the so­
lution. The emergent description of the dilute aqueous solution 
of methane is that of a slightly distorted and defective con­
tinuum clathrate structure. 

A comparison of the computer simulation results based on 
the MP and MO potentials for the methane-water interaction 
gives an idea of the effects of electron correlation of the system. 
This may be taken only as leading information, since there are 
still deficiencies in the quality of points in the quantum me­
chanical data base due to basis set truncation effects and the 
nature of Moller-Plesset electron correlation. The calculated 
g(R) for the MP potential in Figure 5 and the MO potential 
in Figure 6 are similar in overall appearance with only minor 
visible discrepancies. The analysis of structure in terms of 
Xc(K) and XR(V) shows electron correlation discernibly dis­
placing the distribution of coordination numbers to higher 
values and the distribution of binding energies to lower values. 
The displacements are of the order of 5-10% in both quan­
tities. 

Further comparison of the results with reference to g(R), 
Xc(K), and x&(v) obtained from the computer simulation 
based on hard methane provides information on the role of the 
soft part of the methane-water potential function on solution 
structure. First, the similarity in the calculated radial distri­
bution functions in Figures 5-7 shows the essential nature of 
the methane-water solution as an excluded volume effect as 
expected. The analysis of the structure shows that the soft part 
of the potential function shifts the distribution of coordination 
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Figure 12. Difference quasicomponent distribution functions Axc(K) vs. 
coordination number K for (a) the MP function, (b) the MO functions, 
(c) the HM function. 

numbers upwards by 15% and shifts the distribution of meth­
ane-water binding energies down by 3.2 kcal/mol. 

Finally we consider the effects of solute methane on water 
structure. We note that Owicki and Scheraga11 have identified 
structuration effects in the solvent by studying explicitly the 
waters vicinal to the solute by a method involving partitioning 
of configuration space. A similar analysis is being employed 
in a molecular dynamics study of a solution of dipeptide in 
water by Rossky and Karplus.26 We develop our representation 
of the phenomenon in terms of difference (A) quasicomponent 
distribution functions. The idea here is to describe the changes 
in water structure in terms of difference between Xc(K) and 
XB(V) calculated for the solution and for the pure liquid. The 
effects of bulk water are removed by the differencing, allowing 
the direct display of structural changes in solution water wi­
thout recourse to partitionings of configuration space. The 
formal significance of difference quasicomponent distribution 
functions is developed in Appendix A to this paper. 

The &XQ(K) and AXBM for solvent water in the dilute 
aqueous solution of methane with respect to bulk water as 
described in ref 8 are given in Figures 12 and 13. In the dis­
tribution of Xc(AO there is a clear increase in four-coordinate 
species at the expense of coordination numbers K = 2, 5, and 
6. These results must be considered in the perspective of the 
relatively large error bounds on the A-QCDF, but the increase 
in four-coordinate structures is definitely statistically signifi­
cant. The AXBM show slight but clearly discernible shifts 
toward stronger binding among solvent water molecules. The 
nature of the solvent structuration with respect to clathrate 
water molecules as seen from Figures 9 and 10 involves pre­
dominantly bent hydrogen bonds rather than linear hydrogen 
bonds characteristic of ice I. 

If one permits the identification of an increase in four-
coordinate species in the solvent and increased binding with 
"structure making", the A-QCDF description of structuration 
effects serves to quantify some of the long standing terminology 
prevalent in the descriptive chemistry of solutions. The prob-
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lems inherent in this connection are brought out in the critical 
review of the problem by Holzer and Emerson,27 and we re­
serve judgement on this point until we have determined 
Axc(A") and AXBM for solvent water in a number of solutions 
of putative structure makers and structure breakers. We 
presently have studies parallel to this underway on dilute 
aqueous solutions of monatomic cations and anions to gain 
additional insight into this aspect of the problem. 

VI. Summary and Conclusions 

Monte Carlo computer simulation on the dilute aqueous 
solution of methane at 25 0C using quantum mechanical po­
tential functions reveals the local solution environment to be 
that of a distorted defective continuum pentagonal dodeca-
hedral clathrate structure. Increased four coordination and 
stronger binding is induced in the solvent water as compared 
with the bulk liquid. Using difference quasicomponent dis­
tribution functions to quantify structural perturbations in the 
solvent, we find increased four coordination and stronger 
binding in the water as compared to bulk liquid. 
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Appendix A. Difference Quasicomponent Distribution 
Functions 

We present herein considerations on describing perturba­
tions on water structure due to the addition of a solute mole­
cule. The structure of water in an aqueous solution can be de­
fined in terms of quasicomponent distribution functions for 
coordination number K and binding energy v as 

Xc(K)= Nc0KK)/N (Al) 
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* B « = NBW(v)/N (A2) AXBW = xB(v) - xBMw (A9) 

Here x-, is the mole fraction of particles in the system with 
characteristic i, N^ is the first-order quasicomponent dis­
tribution function, and N is the number of water molecules in 
the system. In a solution problem, we wish particularly to de­
termine the quantities such as 

diVc
(1)

 JdA ,
B

(1)(") 
• and - (A3) 

dNs """ dNs 

the change d7Vj(1) in the first-order quasicomponent distribu­
tion function with respect to the change in the number of solute 
molecules dAs-

Taking coordination number as an example and developing 
the derivative in terms of finite differences, we have 

dNc
(l){K) ANC

W(K) 
dNs ANS 

= A/Vc
(1 KK) (A4) 

where ATVs has been assigned the value of unity since our 
system involves the addition of only one solute particle. Now 
for calculations based on AV water molecules in the pure liquid 
and N solvent waters in the solution, 

AiVc0H*) = Ncw{K) - NC
W(K)W 

= Nxc(K( - NwXc(K)* (A5) 

where XQ(K) is the mole fraction of water molecules as a 
function of A" for solvent water in a solution and xc(K)w is the 
corresponding quantity for pure water. In our treatment of the 
problem, the number of solvent waters A" is equal to AV — 1, 
one of the waters having been replaced by the solute. Using this 
relationship for A", expanding eq B5, and substituting back into 
eq B4, we have 

dNcw(K)/dNs = Ny, Ax0(K) Nw » 1 (A6) 

where Axc(K) is the difference quantity 

Axc{K) = xc(K) - xc(K)* (Al) 

Analogously for binding energy, 

dNB
w(v)/dNs =* A V A X B W ^ W » 1 (A8) 

where 

Note that Ax0(K) alone is a quantity dependent on the number 
of particles in the system whereas the difference quasicom­
ponent distribution functions dNc(l)/dNs and dNs^/dNs 
are effectively independent of the number of particles in the 
system and can be used for absolute comparison among sys­
tems. 
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